ASBESTOS SURVEY BERKELEY BUILDING 877 FULTON MALL FRESNO, CALIFORNIA

Project No. 014-13105 June 6, 2013

Prepared for:
Enrique Mendez
The Successor Agency to the Redevelopment
Agency of the City of Fresno
2344 Tulare Street, Suite 200
Fresno, California 93721
(559) 621-7603

Prepared by: Krazan & Associates, Inc. 215 West Dakota Avenue Clovis, California 93612 (559) 348-2200

TABLE OF CONTENTS Project No. 014-13105

Page
1.0 INTRODUCTION
2.0 PURPOSE AND SCOPE OF WORK
3.0 BUILDING DESCRIPTION
4.0 INVESTIGATIVE METHODS2
4.1 Sampling Protocols
4.2 Laboratory Analytical Methods
5.0 RESULTS OF INVESTIGATION2
6.0 CONCLUSIONS
7.0 LIMITATIONS4
<u>Figures</u>
Asbestos Survey Results
Floor Plan following Results
Annondiaga
Appendices Analytical Results and Chain-of-Custody Record
DOSH Certifications

GEOTECHNICAL ENGINEERING • ENVIRONMENTAL ENGINEERING CONSTRUCTION TESTING & INSPECTION

June 6, 2013 Project No. 014-13105

ASBESTOS SURVEY BERKELEY BUILDING 877 FULTON MALL FRESNO, CALIFORNIA

1.0 INTRODUCTION

This report presents the results of our asbestos survey for the structure located at 877 Fulton Mall in Fresno, California. The asbestos survey was conducted under the conditions of Krazan & Associates, Inc.'s (Krazan's) Proposal No. P13-140, dated April 24, 2013. Enrique Mendez gave written authorization on April 25, 2013, for Krazan to proceed with the asbestos survey.

2.0 PURPOSE AND SCOPE OF WORK

The purpose of the asbestos survey was to identify and quantify the presence of potential asbestos-containing materials (ACMs) at the on-site structure. The scope of work for the asbestos survey included conducting a visual survey of the structure and conducting bulk sampling and analysis of materials suspected to contain asbestos. This survey was performed in accordance with applicable local, state, and federal regulations.

3.0 BUILDING DESCRIPTION

The structure was a two-story structure with basement, stucco, brick, and ceramic tiled exterior walls, with mineral surface rolled roofing. Interior construction included gypsum board, acoustic ceiling tiles, plaster, and suspended ceilings with two-foot by four-foot ceiling panels; gypsum board, plaster, wood, brick, concrete block, open-framed, and ceramic tiled walls; and concrete floors overlain (in areas) by wall-to-wall carpeting, floor tiles, ceramic tiles, and terrazzo.

4.0 INVESTIGATIVE METHODS

4.1 Sampling Protocols

Seventy-one (71) samples of suspected ACMs were collected from throughout the on-site structure.

Sample locations for this survey were chosen in a semi-random fashion with emphasis placed on

minimizing damage to the sampled materials. The samples were collected by carefully removing a small

amount of the suspect material in a non-abrasive manner. If possible, samples were collected from

existing damaged areas or loose pieces of materials. Each sample was placed in a separate sealed plastic

bag, and labeled with the project number and sample number. Refer to the Floor Plan following the text

for the bulk sample locations.

4.2 Laboratory Analytical Methods

The bulk samples collected were analyzed by A.E.S.L. Environmental of Tempe, Arizona, to detect the

presence, type, and percentage of asbestos by polarized light microscopy/dispersion staining, following

the procedure described in 40 CFR 763, Subpart E, Appendix A (AHERA). Copies of the Analytical

Results and Chain-of-Custody Record are included in Appendix A.

5.0 RESULTS OF INVESTIGATION

As stated previously, 71 samples of suspected ACMs were collected from throughout the structure.

Analytical laboratory results and field observations of the materials sampled have been summarized on

Table I, following the text of this report. Information presented within the table includes the sample

number, the sample description, the location where the sample was obtained, the asbestos content, the

volume of ACMs identified (typically expressed in square feet), the condition of the material sampled,

and a listing of locations where similar (homogenous) ACMs were also noted (although not necessarily

sampled in these areas). In addition, footnotes have been provided to convey pertinent information

regarding the specific sample or homogenous material.

The following materials were identified as containing at least one percent asbestos:

9-in by 9-in Floor tile and associated mastic – throughout structure (Sample Nos.44, 45, 46, 47, 48, 50,

and 51). This material would be considered a Category I non-friable ACM under the NESHAP

Regulations.

KRAZAN & ASSOCIATES, INC.

Project No. 014-13105 Page No. 3

The following materials were identified as containing at least one percent asbestos: (continued)

Pipe elbow insulation – basement mechanical room (Sample No. 60). This material would be considered a friable ACM under the NESHAP Regulations.

Roof mastic – on metal wall cap on roof (Sample No. 71). This material would be considered a Category I non-friable ACM under the NESHAP Regulations.

Vent pipe – on steam generator in basement (Assumed asbestos). This material would be considered a Category II non-friable ACM under the NESHAP Regulations.

6.0 CONCLUSIONS

The National Emissions Standards for Hazardous Air Pollutants (NESHAP) defines regulated asbestos-containing materials (RACM) as the following: friable materials containing more than one percent asbestos as determined by polarized light microscopy; Category I non-friable materials (i.e., floor tiles, asphalt roofing products) containing more than one percent asbestos that have become friable, have been subjected to or will be subjected to sanding, grinding, cutting, or abrading; and Category II non-friable materials (i.e., non-friable asbestos-containing materials that are not Category I materials) containing more than one percent asbestos that have a high probability of becoming or have already been reduced to a friable condition by demolition or renovation activities. The above-noted samples that contain greater than one percent asbestos may meet the definition of a RACM under the NESHAP depending on the abatement method employed. In addition, the California Division of Occupational Safety and Health (Cal-OSHA) defines asbestos-containing construction material (ACCM) as greater than 0.1 percent asbestos. The above-noted samples that contain greater than 0.1 percent asbestos would meet the definition of an ACCM.

If these asbestos-containing materials are left in place, the occupants of the structure should avoid buffing, sanding, grinding, or abrading these materials in any way. These activities could potentially release asbestos fibers. An Operations and Maintenance Program (O&M Program) could be developed for the management of asbestos-containing materials if left in place. The development and implementation of such a program would require the designation and training of an asbestos program manager. The asbestos program manager would be responsible for conducting periodic inspections of the asbestos-containing materials, record keeping requirements, and providing awareness training necessary for any maintenance or custodial personnel required to clean or repair these materials. Furthermore, it is recommended that the asbestos program manager notify all potentially affected individuals.

Project No. 014-13105

Page No. 4

When building maintenance, repair, renovation, or other activities disturb or damage ACMs, asbestos

fibers may be released creating a potential hazard. Therefore, removal of friable and non-friable ACMs

that have the potential to become friable during demolition and/or renovation is federally regulated under

the NESHAP. The San Joaquin Valley Air Pollution Control District (APCD) is the responsible agency

on the local level to enforce the NESHAP. The APCD Regional Office requires that asbestos-containing

materials (ACM) be removed prior to renovation or demolition activities. Additionally, the APCD must

be notified prior to any demolition and/or renovation activities.

7.0 LIMITATIONS

This survey and review of the subject property has been limited in scope. This investigation is

undertaken with the risk that visual observations and random sampling alone would not reveal the

presence, full nature, and extent of asbestos-containing materials. Krazan makes no representation as to

the asbestos content of materials not sampled or that were inaccessible to our inspector (i.e., between

walls, beneath floors, in pipe chases, etc.). The asbestos sample locations and building dimensions were

measured/located in the field by tape measurement from existing features. Therefore, the sample

locations, building dimensions, and approximate square footage of asbestos-containing materials should

be considered accurate only to the degree implied by the methods used.

The findings presented in this report were based on field observations, random sampling and analysis,

review of available data, and discussions with local regulatory and advisory agencies. Therefore, the data

obtained are clear and accurate only to the degree implied by the sources and methods used. The

information presented herewith was based on professional interpretation using presently accepted

methods with a degree of conservatism deemed proper as of the report date. We do not warrant that

future technical developments cannot supersede such data.

This asbestos survey is not intended to be the sole basis for asbestos removal bids. Confirmation of the

condition and volume of the ACMs should be conducted by prospective removal contractors prior to

accepting removal bids. This report is provided for the exclusive use of the client noted on the cover page

and is subject to the terms and conditions in the applicable contract between the Client and Krazan. The

client is the only party to whom Krazan has explained the risks involved and has been involved in the

shaping of the scope of services needed to satisfactorily manage those risks, if any, from the client's point

of view. Any third party use of this report, including use by the Client's lender, prospective purchaser, or

lessee will be subject to the terms and conditions governing the contractual work between the Client and

KRAZAN & ASSOCIATES, INC.

Project No. 014-13105 Page No. 5

Krazan. The unauthorized use of, reliance on, or release of the information contained in this report,

without the expressed written consent of Krazan, is strictly prohibited and will be without risk or liability

to Krazan.

Asbestos analysis was conducted by a laboratory accredited under the National Voluntary Laboratory

Accreditation Program (NVLAP) administered by the National Institute of Standards and Technology

(NIST). The results of the asbestos analyses are accurate only to the degree and care of ensuring the

testing accuracy and the representative nature of the samples obtained.

If you have any questions or if we may be of further assistance, please do not hesitate to contact our office

at (559) 348-2200.

Respectfully submitted,

KRAZAN & ASSOCIATES, INC.

Jeffre R. Noël

DOSH Certified Asbestos Consultant

No. 00-2828

JRN/atd

2c: herewith

TABLE I

ASBESTOS ANALYSIS RESULTS

Berkeley Building 877 Fulton Mall

Fresno, California

May 8, 2013 Sampling

			Asbestos	Approx.	Condition /	Notes/
Sample No.	Sample Description	Sample Location	Content	Sq. Ft.	Friability	Additional locations
1	Plaster	2nd floor	ND	NC	NA	homogenous throughout
2	Plaster	basement	ND	NC	NA	homogenous throughout
3	Plaster	basement	ND	NC	NA	homogenous throughout
4	Plaster	1st floor	ND	NC	NA	homogenous throughout
5	Skim coat	2nd floor	ND	NC	NA	homogenous throughout
6	Skim coat	basement	ND	NC	NA	homogenous throughout
7	Skim coat	basement	ND	NC	NA	homogenous throughout
8	Skim coat	1st floor	ND	NC	NA	homogenous throughout
9	Gypsum board	2nd floor	ND	NC	NA	plaster backer board, homogenous throughout
10	Gypsum board / taping material	2nd floor	ND	NC	NA	homogenous throughout
11	Gypsum board / taping material	2nd floor	ND	NC	NA	homogenous throughout
12	Gypsum board / taping material	2nd floor	ND	NC	NA	homogenous throughout
13	Gypsum board / taping material	2nd floor	ND	NC	NA	homogenous throughout
14	Gypsum board / taping material	1st floor	ND	NC	NA	homogenous throughout
15	Gypsum board / taping material	1st floor	ND	NC	NA	homogenous throughout
16	Gypsum board / taping material	1st floor	ND	NC	NA	homogenous throughout
17	Gypsum board / taping material	1st floor	ND	NC	NA	homogenous throughout
18	Gypsum board / taping material	basement	ND	NC	NA	homogenous throughout
19	Gypsum board / taping material	basement	ND	NC	NA	homogenous throughout
20	Gypsum board / taping material	basement	ND	NC	NA	homogenous throughout
21	Texture	2nd floor	ND	NC	NA	homogenous throughout
22	Texture	2nd floor	ND	NC	NA	homogenous throughout
23	Texture	2nd floor	ND	NC	NA	homogenous throughout
24	Texture	2nd floor	ND	NC	NA	homogenous throughout
NA	= Not applicable		F	= Fair cond	lition	
NC	= Not calculated		G	= Good cor	ndition	
ND	= None detected		NF	= Non-frial	ble	
Trace	= Less than one percent (<1%) chrys	sotile asbestos	FR	= Friable		

KRAZAN & ASSOCIATES, INC. Serving the Western United States

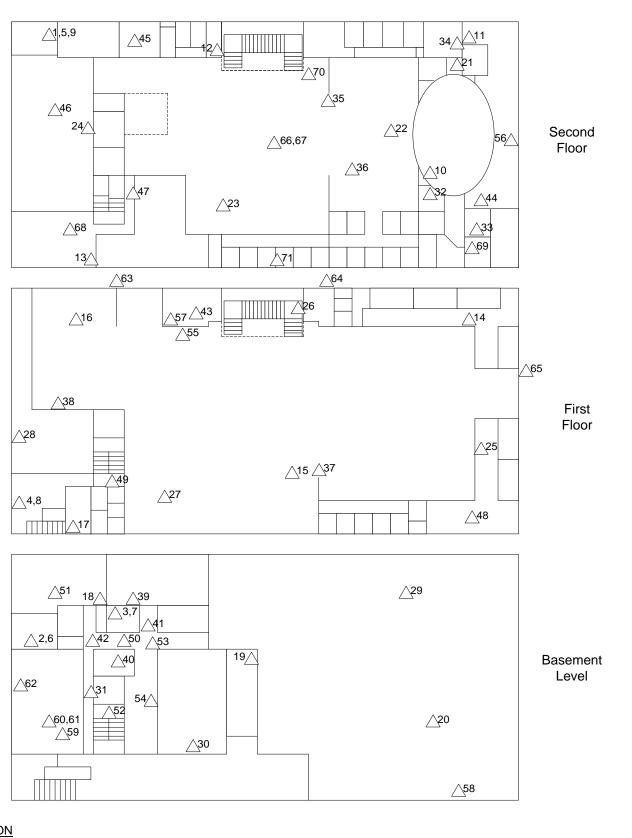
TABLE I (Continued)

ASBESTOS ANALYSIS RESULTS

Berkeley Building 877 Fulton Mall Fresno, California

May 8, 2013 Sampling

			Asbestos	Approx.	Condition /	/ Notes/
Sample No.	Sample Description	Sample Location	Content	Sq. Ft.	Friability	Additional locations
25	Texture	1st floor	ND	NC	NA	homogenous throughout
26	Texture	1st floor	ND	NC	NA	homogenous throughout
27	Texture	1st floor	ND	NC	NA	homogenous throughout
28	Texture	1st floor	ND	NC	NA	homogenous throughout
29	Texture	basement	ND	NC	NA	homogenous throughout
30	Texture	basement	ND	NC	NA	homogenous throughout
31	Texture	basement	ND	NC	NA	homogenous throughout
32	Wallpaper	2nd floor	ND	NC	NA	
33	Wallpaper	2nd floor	ND	NC	NA	
34	Wallpaper	2nd floor	ND	NC	NA	
35	Wallpaper	2nd floor	ND	NC	NA	
36	Wallpaper	2nd floor	ND	NC	NA	
37	Wallpaper	1st floor	ND	NC	NA	
38	Wallpaper	1st floor	ND	NC	NA	
39	Wallpaper	basement	ND	NC	NA	
40	12-in by 12-in Ceiling tile	basement	ND	NC	NA	main
41	12-in by 12-in Ceiling tile	basement	ND	NC	NA	patch
42	12-in by 12-in Ceiling tile	basement	ND	NC	NA	patch
43	2-ft by 4-ft Ceiling panel	1st floor	ND	NC	NA	vinyl wrapped gypsum board type
44	9-in by 9-in Floor tile / mastic	2nd floor	3% / 2%	600	G/NF	brown streaked
45	9-in by 9-in Floor tile / mastic	2nd floor	3% / 2%	450	G/NF	gray streaked
46	9-in by 9-in Floor tile / mastic	2nd floor	3% / 2%	700	G/NF	tan
47	9-in by 9-in Floor tile / mastic	2nd floor	3% / 2%	75	G/NF	tan
48	9-in by 9-in Floor tile / mastic	1st floor	3% / 2%	600	G/NF	brown streaked
NA	= Not applicable		F	= Fair cond		
NC	= Not calculated		G	= Good co		
ND	= None detected		NF	= Non-fria	ble	
Trace	= Less than one percent $(<1\%)$ chrys	sotile asbestos	FR	= Friable		


TABLE I (Continued)

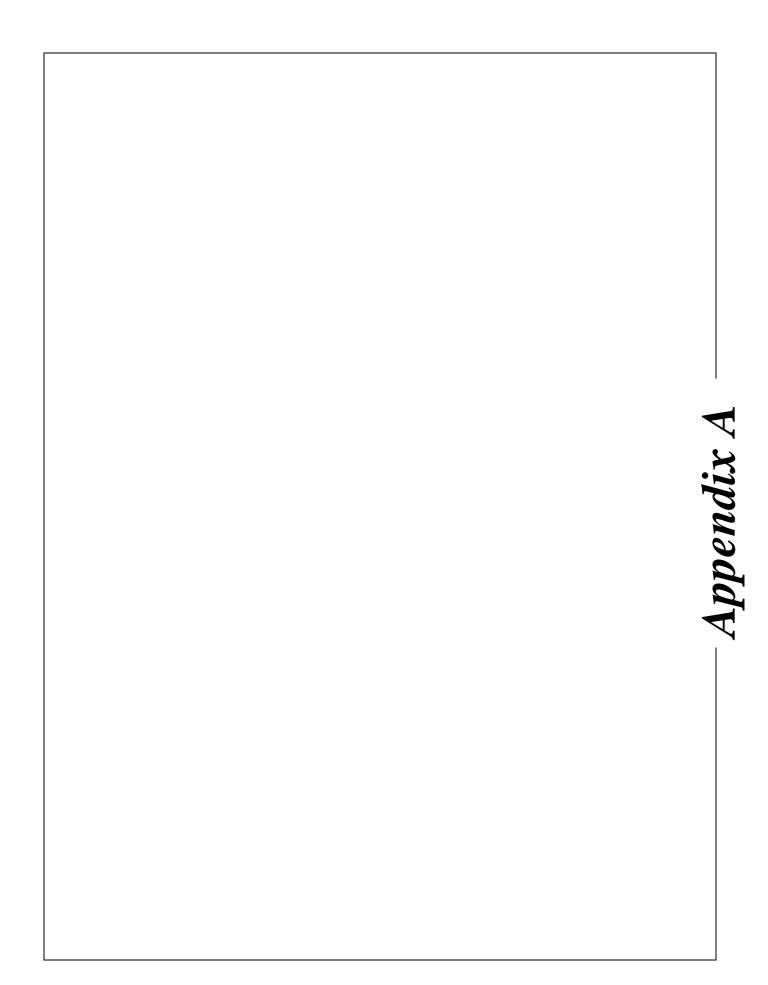
ASBESTOS ANALYSIS RESULTS

Berkeley Building 877 Fulton Mall Fresno, California

May 8, 2013 Sampling

			Asbestos	Approx.	Condition /	Notes/
Sample No.	. Sample Description	Sample Location	Content	Sq. Ft.	Friability	Additional locations
49	9-in by 9-in Floor tile / mastic	1st floor	ND	NC	NA	yellow
50	9-in by 9-in Floor tile / mastic	basement	3% / 2%	800	G/NF	tan
51	9-in by 9-in Floor tile / mastic	basement	3% / 2%	275	G/NF	green streaked
52	Stair tread	basement	ND	NC	NA	
53	Ceiling tile mastic	basement	ND	NC	NA	
54	Base cove mastic	basement	ND	NC	NA	brown coving
55	Base cove mastic	1st floor	ND	NC	NA	black coving
56	Base cove mastic	2nd floor	ND	NC	NA	black coving
57	Paneling mastic	1st floor	ND	NC	NA	
58	Duct wrap	basement	ND	NC	NA	over FG insulation on metal ducting
59	Duct tape	basement	ND	NC	NA	on metal ducting
60	Elbow insulation	basement	2%	< 50	G/FR	
61	Insulation wrap	basement	ND	NC	NA	over # 60
62	Insulation wrap	basement	ND	NC	NA	over FG insulation
63	Stucco	exterior	ND	NC	NA	homogenous throughout
64	Stucco	exterior	ND	NC	NA	homogenous throughout
65	Stucco	exterior	ND	NC	NA	homogenous throughout
66	Roof core	roof	ND	NC	NA	full depth core
67	Roof tar	roof	ND	NC	NA	between roofing layers and seams
68	Roof mastic	roof	ND	NC	NA	roof penetrations
69	Roof mastic	roof	ND	NC	NA	roof patches
70	Roof mastic	roof	ND	NC	NA	roof patches
71	Roof mastic	roof	4%	<100	G/NF	on metal wall cap
NA	= Not applicable		F	= Fair cond	dition	
NC	= Not calculated		G	= Good co	ndition	
ND	= None detected		NF	= Non-fria	ble	
Trace	= Less than one percent (<1%) chrys	sotile asbestos	FR	= Friable		

EXPLANATION


BUILDING MATERIAL SAMPLE LOCATION

FLOOR PLAN WITH BUILDING MATERIAL	
SAMPLE LOCATIONS	

BERKELEY BUILDING 877 FULTON MALL FRESNO, CALIFORNIA

Scale:	Date:
NOT TO SCALE	6 / 13
Drawn by:	Approved by:
J. R. N.	J.R.N
Project No.	Figure No.
014-13105	1

800 North Mary Street • Tempe, Arizona 85281 (480) 966-3714 • Fax (480) 394-0188

BULK ASBESTOS ANALYSIS SUMMARY REPORT

CLIENT NAME: Krazan & Associates, Inc.

DATE OF RECEIPT: May 9, 2013

215 W. Dakota Avenue SAMPLE CONDITION: Good

Clovis, CA 93612 DATE ANALYZED: May 13, 2013

A.E.S.L. LABORATORY #: 13-A387 PROJECT: Berkeley Building / 01413105

A.E.S.L. LAB SAMPLE ID#	CLIENT SAMPLE	SAMPLE DESCRIPTION	TEST	RESULTS	OTHER MATERIALS
	1D#	& COLOR	Pos. / Neg.	% & Туре	
A387-1	l	Grey Plaster	Negative	•••••	1% Cellulose 99% Non-Fibrous
A387-2	2	Grey Plaster	Negative	*******	1% Cellulose 99% Non-Fibrous
A387-3	3	Grey Plaster	Negative	******	1% Cellulose 99% Non-Fibrous
A387-4	4	Grey Plaster	Negative	*********	1% Cellulose 99% Non-Fibrous
A387-5	5	White Skim Coat	Negative		100% Non-Fibrous
A387-6	6	White Skim Coat	Negative	*******	100% Non-Fibrous
A387-7	7	White Skim Coat	Negative		100% Non-Fibrous
A387-8	8	White Skim Coat	Negative		100% Non-Fibrous
A387-9 a	9 a	White Texture	Negative	*********	100% Non-Fibrous
A387-9 b	9 b	White Gypsum	Negative	•••••	10% Cellulose 90% Non-Fibrous
A387-10 a	10 a	White Texture	Negative		100% Non-Fibrous
A387-10 b	10 Ь	White Gypsum	Negative	********	10% Cellulose 90% Non-Fibrous
A387-11 a	11 a	White Texture	Negative		100% Non-Fibrous
A387-11 b	11 b	White Gypsum	Negative		10% Cellulose 90% Non-Fibrous
A387-12 a	12 a	White Texture	Negative		100% Non-Fibrous
A387-12 b	12 b	White Gypsum	Negative	*********	10% Cellulose 90% Non-Fibrous
A387-13 a	13 a	White Texture	Negative		100% Non-Fibrous
A387-13 b	13 b	White Gypsum	Negative		10% Cellulose 90% Non-Fibrous
A387-14 a	14 a	White Texture	Negative	*******	100% Non-Fibrous
A387-14 b	14 b	White Gypsum	Negative	*********	10% Cellulose 90% Non-Fibrous
A387-15 a	15 a	White Texture	Negative	******	100% Non-Fibrous
A387-15 b	15 b	White Gypsum	Negative		10% Cellulosc 90% Non-Fibrous
A387-16 a	16 a	White Texture	Negative	*******	100% Non-Fibrous
A387-16 b	16 b	White Gypsum	Negative	*******	10% Cellulose 90% Non-Fibrous
A387-17 a	17 a	White Texture	Negative		100% Non-Fibrous
A387-17 b	17 b	White Gypsum	Negative		10% Cellulose 90% Non-Fibrous
A387-18 a	18 a	White Texture	Negative		100% Non-Fibrous

A.E.S.L. LAB SAMPLE ID#	CLIENT SAMPLE	SAMPLE DESCRIPTION	TEST	RESULTS	OTHER MATERIALS
	ID#	& COLOR	Pos. / Neg.	% & Туре	
A387-18 b	18 b	White Gypsum	Negative		10% Cellulose 90% Non-Fibrous
А387-19 а	19 a	White Texture	Negative		100% Non-Fibrous
A387-19 b	19 b	White Gypsum	Negative		10% Cellulose
					90% Non-Fibrous
A387-20 a	20 a	White Texture	Negative		100% Non-Fibrous
А387-20 b	20 b	White Gypsum	Negative	*******	10% Cellulose
					90% Non-Fibrous
Λ387-21	21	White Texture	Negative		2% Cellulose
					98% Non-Fibrous
Λ387-22	22	White Texture	Negative		2% Cellulose
					98% Non-Fibrous
A387-23	23	White Texture	Negative		2% Cellulose
					98% Non-Fibrous
A387-24	24	White Texture	Negative		2% Cellulose
					98% Non-Fibrous
A387-25	25	White Texture	Negative		2% Cellulose
					98% Non-Fibrous
Λ387-26	26	White Texture	Negative		2% Cellulose
					98% Non-Fibrous
A387-27	27	White Texture	Negative	*********	2% Cellulose
					98% Non-Fibrous
A387-28	28	White Texture	Negative		2% Cellulose
					98% Non-Fibrous
A387-29	29	White Texture	Negative		2% Cellulose
					98% Non-Fibrous
A387-30	30	White Texture	Negative		2% Cellulose
					98% Non-Fibrous
A387-31	31	White Texture	Negative	*********	2% Cellulose
4307.33	22	T W II	- ,, 		98% Non-Fibrous
A387-32	32	Tan Wallpaper	Negative		40% Cellulose
1207.22		T. W.D.	No. of		60% Non-Fibrous
A387-33	33	Tan Wallpaper	Negative		40% Cellulose 60% Non-Fibrous
A387-34	34	Pink Wallpaper	Negative	 	40% Cellulose
A387-34	34	Рик жапрарег	Negative		60% Non-Fibrous
A387-35	35	White Wallpaper	Negative		40% Cellulose
M301-33] 33	wine wanpaper	Negative		60% Non-Fibrous
A387-36	36	Tan Wallpaper	Negative		40% Cellulose
A307-30] 50	tan wanpaper	Negative		60% Non-Fibrous
A387-37	37	Pink Wallpaper	Negative		40% Cellulose
11307-37] "	Tink Wanpaper	riegative		60% Non-Fibrous
A387-38	38	Grey Wallpaper	Negative		40% Cellulose
	"				60% Non-Fibrous
A387-39	39	Tan Wallpaper	Negative		40% Cellulose
			3		60% Non-Fibrous
Λ387-40	40	White Ceiling Tile	Negative		95% Cellulose
					5% Non-Fibrous
Λ387-41	41	White Ceiling Tile	Negative		95% Cellulose
					5% Non-Fibrous
A387-42	42	White Ceiling Tile	Negative		95% Cellulose
	1	_	-		5% Non-Fibrous

A.E.S.L. LAB SAMPLE ID#	CLIENT SAMPLE	SAMPLE DESCRIPTION	TEST	RESULTS	OTHER MATERIALS
5741741 4313 115 #	ID#	& COLOR	Pos. / Neg.	% & Туре	MATERIA
Λ387-43	43	White Ceiling Panel	Negative		10% Cellulose 90% Non-Fibrous
A387-44 a	44 a	Black 9x9 Floor Tile	Positive	3% Chrysotile	97% Non-Fibrous
A387-44 b	44 b	Black Mastic	Positive	2% Chrysotile	98% Non-Fibrous
A387-45 a	45 a	Grey 9x9 Floor Tile	Positive	3% Chrysotile	97% Non-Fibrous
A387-45 b	45 b	Black Mastic	Positive	2% Chrysotile	98% Non-Fibrous
A387-46 a	46 a	Tan 9x9 Floor Tile	Positive	3% Chrysotile	97% Non-Fibrous
A387-46 b	46 b	Black Mastic	Positive	2% Chrysotile	98% Non-Fibrous
A387-47 a	47 a	Tan 9x9 Floor Tile	Positive	3% Chrysotile	97% Non-Fibrous
A387-47 b	47 b	Black Mastic	Positive	2% Chrysotile	98% Non-Fibrous
A387-48 a	48 a	Grey 9x9 Floor Tile	Positive	3% Chrysotile	97% Non-Fibrous
A387-48 b	48 b	Black Mastic	Positive	2% Chrysotile	98% Non-Fibrous
A387-49 a	49 a	Tan 9x9 Floor Tile	Negative	276 CHrysothe	100% Non-Fibrous
A387-49 b	49 b	Yellow Mastic	Negative		100% Non-Fibrous
		Tan 9x9 Floor Tile		3% Chrysotile	97% Non-Fibrous
A387-50 a	50 a	4	Positive		
A387-50 b	50 b	Black Mastic	Positive	2% Chrysotile	98% Non-Fibrous
A387-51 a	51 a	Grey 9x9 Floor Tile	Positive	3% Chrysotile	97% Non-Fibrous
A387-51 b	51 b	Black Mastic	Positive	2% Chrysotile	98% Non-Fibrous
A387-52 a	52 a	Grey Tread	Negative	*******	100% Non-Fibrous
A387-52 b	52 b	Yellow Adhesive	Negative		100% Non-Fibrous
A387-53	53	Brown Mastic	Negative		100% Non-Fibrous
Λ387-54	54	Brown Mastic	Negative		100% Non-Fibrous
Λ387-55	55	Brown Mastic	Negative		100% Non-Fibrous
A387-56	56	Brown Mastic	Negative		100% Non-Fibrous
A387-57	57	White Mastic	Negative		100% Non-Fibrous
A387-58	58	White Duct Wrap	Negative		60% Cellulose 40% Non-Fibrous
Λ387-59	59	White Duct Tape	Negative		60% Cellulose 40% Non-Fibrous
A387-60	60	Grey Insulation	Positive	2% Chrysotile	8% Cellulose 15% Mineral Wool 75% Non-Fibrous
A387-61	62	Insulation Wrap	Negative	••••••	60% Cellulose 40% Non-Fibrous
A387-62	63	Insulation Wrap	Negative		60% Cellulose 40% Non-Fibrous
A387-63	63	Grey Stucco	Negative	*******	100% Non-Fibrous
A387-64	64	Grey Stucco	Negative		100% Non-Fibrous
A387-65	65	Grey Stucco	Negative	********	100% Non-Fibrous
A387-66 a	66 a	White/Black Roof	Negative	********	20% Cellulose 80% Non-Fibrous
A387-66 b	66 b	Black Roof	Negative		20% Fibrous Glass 80% Non-Fibrous
А387-66 с	66 c	Black Roof	Negative		20% Fibrous Glass 80% Non-Fibrous
A387-66 d	66 d	Black Roof	Negative	********	25% Fibrous Glass 75% Non-Fibrous
A387-67	67	Black Tar	Negative	*******	100% Non-Fibrous
A387-68	68	Black Roof Mastic	Negative		2% Fibrous Glass
					98% Non-Fibrous

A.E.S.L. LAB SAMPLE ID#	CLIENT SAMPLE ID#	SAMPLE DESCRIPTION & COLOR	TEST	RESULTS % & Type	OTHER MATERIALS
A387-69	69	Black Roof Mastic	Negative		2% Fibrous Glass 98% Non-Fibrous
A387-70	70	Black Roof Mastic	Negative		2% Fibrous Glass 98% Non-Fibrous
A387-71	71	Grey Roof Mastic	Positive	4% Chrysotile	96% Non-Fibrous

Method: Polarized Light Microscopy, EPA Method 600/R-93/116

The result quantitations reported are an estimation based on the methods of visual microscopic estimation, which is considered only a semi-quantitative technique. Also, this report is indicative only of the sample material A.E.S.L. Laboratory received. Results do not necessarily reflect the makeup of the entire span of the material from which the samples were derived. Sampling techniques and/or sample handling may affect the integrity of the sample/s before submission to A.E.S.L. Laboratory and hence the outcome of the laboratory results. Samples not destroyed by testing are retained a minimum of thirty days. A.E.S.L. Laboratory recommends re-analysis by point count or Transmission Electron Microscopy (TEM) for materials that are found to contain less than ten percent (<10%) asbestos by PLM.

This report cannot be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government. This report shall not be reproduced except in full, without the written consent of A.E.S.L.

Analyzed by: Shawn Kearney

Z:\AESL\bulk\13-a000\13-A387.doc

A.E.S.L. LABORATORY #:	13-A387
------------------------	---------

POINT COUNT TRACE RESULTS

BULK ASBESTOS SAMPLE

PO #: 1	4-
---------	----

Page \downarrow of \downarrow **CHAIN OF CUSTODY** TURNA

_HR / Same Day / 24HR	48HR
	_HR / Same Day / 24HR

Client Name: Krazan & Associates, Inc.	Contact: Jeff Noel	Phone: (559) 348-2200	Fax: (559) 348-2201
Address: 215 West Dakota Avenue	City: Clovis	State: California	Zip: 93612
PROJECT NAME: Backday But	PROJECT ID #:	OLY 13 LOS DATE SAMPLES TAKEN	: 5/8/13
SAMPLES RECV'D (#):71 DA	TE RECVD: 5-9-13	CONDITION: SAMPLES ACCEPTED (Y N):	IF NO, WHY?
***0	SAMPLES TO BE DETLIBNED TO CLIENT	TAFTED 20 DAVE OF DISPOSED OF BY A F.C.I. (D. D.)	•••

(IF NOT SPECIFIED WILL AUTOMATICALLY BE DISPOSED OF AFTER 30 DAYS)

A.E.S.L. Sample #	Client ID#	Sample Location	Sample Description	A.E.S.L. Sample #	Client ID#	Sample Location	Sample Description
	1	877 fulton Mall	Plaster	- Junio II	26	877 Fulton Mall	Texture
	2		TIAS		27	1	1
	3				28		
	4		V		29		
	5		Skim cont		30		
	6				3(V
	7				32		Wellpaper
	8		T.		33		100
	9		GBTM		34		
	10		1		35		
	11				36	A	1
	12				37		
	13				38		
	14				39		V
	15	6			40		12+12 Cailing the
	(6				41		
	17				42		V
	18				43		2r4 Ceiling panel
	19				44		9x9 Floor tile
	90		V		45		1
	16	\ \tag{\partial}	Tostare		V6		
	92		•		47		/
	23				40		
Li-	24				49		
	25		4		50	V	V

RELINQUISHED BY:

RECEIVED AT A.E.S.L. BY:

POINT COUNT TRACE RESULTS

BULK ASBESTOS SAMPLE

PO	#:	14-	

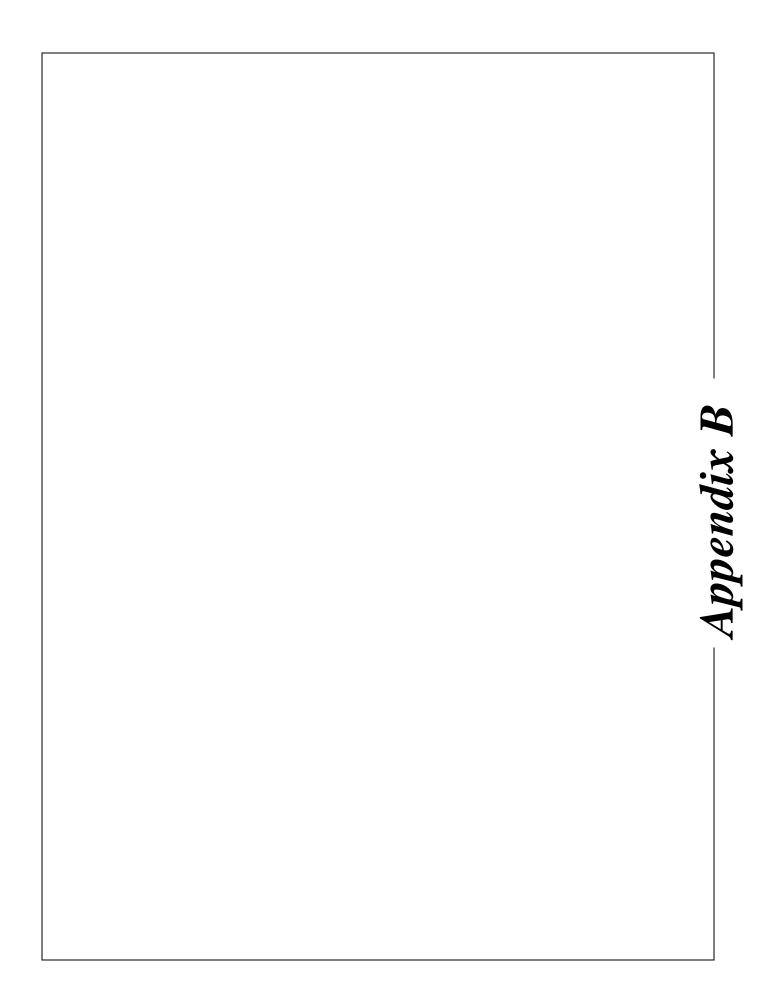
Page 2 of 2

CHAIN OF CUSTODY

		// -
TURNAROUND TIME:	HR / Same Day / 24HI	48HF

Client Name: Krazan & Associates, Inc.	Contact: Jeff Noël	Phone: (559) 348-2200	Fax: (559) 348-2201
Address: 215 West Dakota Avenue	City: Clovis	State: California	Zip: 93612
PROJECT NAME: Berkeley	Building PROJECTI	D#: 01413105 DATE SAMP	LES TAKEN: 5/8/13
SAMPLES RECV'D (#):	DATE RECV'D:	CONDITION: SAMPLES ACCEPTED (Y	, N): IF NO, WHY?
		LIENT AFTER 30 DAYS OR DISPOSED OF BY A.E.S.L. (D I	

A.E.S.L.	Client	Sample	Sample	A.E.S.L.	Client	Sample	Sample
Sample #	ID#	Location	Description	Sample #	ID#	Location	Description
	51	877 Fulton mall	949 Floor tile Stair tread				
	53		Stair tread				
	53		Coiling the mostic			1	
	54		Coiling the mostice Base come mastice				
	55						
	56		V			7	
	57		Paneling mostice				
	TE		Die Van				
	59		Duct Tape				
	60	The state of the s	+ lbow insulation				
	61		Insulation wasp				
	62		V				
	63		Stucco				
	64						
	65		1				
	66		Roof core				
	67		Clost -tar				
	CS		Roof mastic				
	69						
	70						
	71						


A.E.S.L. ENVIRONMENT	AL LABORATORY
800 NORTH MARY STRE	ET, SUITE 6
TEMPE, ARIZONA 85281	-1945
PHONE (480) 966-3714	FAX (480) 394-0188

RELINQUISHED BY:

Melson RECEIVED AT A.E.S.L. BY:

DATE: 5/8

DATE:

STATE OF CALIFORNIA

DEPARTMENT OF INDUSTRIAL RELATIONS Division of Occupational Safety and Health Asbestos Unit 2424 Arden Way, Suite 485 Sacramento, CA 95825-2417 (916) 574-2993 Office (916) 483-0572 Fax http://www.dir.ca.gov/dirdatabases.html actu@dir.ca.gov

009132828C

210

August 14, 2012

Jeffrey Ronald Noel 1055 Chennault Ave

Clovis

CA 93611

Dear Certified Asbestos Consultant or Technician:

Enclosed is your certification card. To maintain your certification, you must abide by the rules printed on the back of the certification card.

Your certification is valid for a period of one year. If you wish to renew your certification, you must apply for renewal at least 60 days before the expiration date shown on your card. [8 CCR 341.15(h)(1)].

Please hold and do not send copies of your required AHERA refresher renewal certificates to our office until you apply for renewal of your certification.

Certificates must be kept current if you are actively working as a CAC or CSST. The grace period is only for those who are not actively working as an asbestos consultant or site surveillance technician.

Please contact our office at the above address, fax number or email; of any changes in your contact/mailing information within 15 days of the change.

Sincerely,

Jeff Ferrell

Senior Safety Engineer

Attachment: Certification Card

cc: File

State of California Division of Occupational Safety and Health **Certified Asbestos Consultant**

Jeffrey Ronald Noel

Certification No. 00-2828

Expires on __10/18/13 This certification was issued by the Division of Occupational Safety and Health as authorized by Sections 7180 et seq. of the Business and Professions Code

Renewal - Card Attached (Revised 01/03/2012)